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A PRODUCTION NKETORK MODEL AND ITS DIFFUSION APPROXIMATION

by

Michael Louis Uenocur

Abstract

This report develops and analyzes a general stochastic

model of a production system. The nodel is closely related to

Harrison's (51 assembly-like queueing network, the principal differ-

.ence being that here we assume all storage buffers have finite

capacity. Our attention is focused on a vector stochastic process Z

whose components are the contents of the various storage buffers (as

functions of time). The principal result Is a weak convergence

theorem of the type developed by glehart and Whitt (7J for queues in

heavy traffic. This limit theorem shows that, with large buffers and

balanced loading of the system's work stations (see below), a properly

normalied version of the storage process Z can be well approxzmated

by a certain vector diffusion process V. We construct Zh by

applying a particular (and rather complicated) reflection mapping to

multidimensional Brownian motion. Various properties of the lmiting

v . diffusion Z are developed, but these provide only a modest begin-

*4 ning for the analytical theory that mst be developed before our limit

theorem can lead to practically useful approximation procedures.

.ZY WORDS
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CHAPTER 1

INTRO 3INOI AND SMEAY

This report develops and analyzes a general stochastic

nodel of a production system. The nodel in closely related to

Harrison's [5] asseably-like queueing network, the principal differ-

ence being that here we asme all storage buffers have finite

capacity. Our attention Is focused on a vector stochastic process Z

whose components are the contents of the various storage buffers (as

functions of time). The principal result is a'weak convergence

theorem of the type developed by glehart and Vhitt (71 for queues In

heavy traffic. This Limit theorem shows that, with large buffers and

balanced loading of the system's work stations (see below), a properly

normalized version of the storage process Z can be well approximated

by a certain vector diffusion process V*. We construct * by

applying a particular (and rather complicated) reflection mapping to

multidimensional Brownian motion. Various propertses of the lMlting

diffusion * are developed, but these provide only a modest begin-

ning for the analytical theory that mast be developed before our limit

theorem can lead to practically useful approximation procedures.

1.1The System Delt Modelled

A simple example of the systems under study Is the assembly

operation pictured In Figure 1. Input Item of types 1 and 2 are

generated by external sources and deposited into sinilarly numbered

storage buffers. We call these external sources ork stations I and
Codes

a ud/or
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2. Assemblers at work station 3 than combine the input Items into

finished goods (type 3 items). Let us asasm that exactly one item

each of types I and 2 is required to mks an Item of type 3, and type

3 Items depart the system Immediately upon completion. Work at

station I or 2 =at stop if the corresponding storage buffer is full,

and work at station 3 mut stop if either of the two storage buffers

is empty. In the former case, potential production from the Input

station is lost because of what we will call blocks. In the latter

case, potential production from the assembly station is lost because

of starvation.

In the description above, we have talked in terms of discrete

items, but Figure 1 could also represent a blending operation in which

granulated or liquid ingredients are combined in fixed proportions to

produce a similarly continuous output product. In that case, one

would speak of external sources delivering material of types I and 2

which is blended to produce output material of type 3, and the storage

buffers might be called surg tanks in the case of liquid flows. Even

when speaking of continuous flow systems, we will nonetheless employ

the language of work stations and storage buffers.

A more complex sort of system is the production network pictured

In Figure 2. Rare we have external work stations supplying material

of types 1, ... , 5, plus a succession of internal work stations that

transform these inputs by stages into an output material of type 10.

Work stations 6, 8 and 10 have multiple inputs, so they involve some

sort of assembly or blending. Internal stations with a single input

might represent such transformations as the stamping of blanks from

2
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Figure 1.* An Assm~ly or Blending Operation. Circles
Represent Work Stations and Square* Represent
Storage Buffers.
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sheet metal, or the cooling of hot liquid Input in a heat .exchanger.

Note that each work station in Figure 2, except the last, deposits

Its output material into a buffer of finite capacity. The work

* station, output material and storage buffer are all designated by the

same umber. Attention will be restricted here to production networks

in which all assembly or blending operations use inputs in fixed pro-

portions, each work station produces a single type of material as

output, and each type of material (except the finished product) is

used as input at a single downstreea station.

Typically, the mount of output that a work station can produce

in any given period Is stochastically variable, due to worker abeente-

eism, mechanical failures, quality variations in raw materials, and so

forth. It is this stochastic variability that leads to non-ero

.inventory levels In the storage buffers and to lost potential output

due to blockage and starvation. Our objective in modeling is to

understand how system performance characteristics, 11ke average

Inventory levels and average throughput rates, depend on distribu-

tional properties of the work rates at various stations.

1.2 Stochastic Models Eployed

Our ultimate purpose Is to propose a class of diffusion processes

as models of production networks. It is not easy to see that these

processes are appropriate for that task, or to see the conditions

under uhlch they are appropriate. Thus, as an aid to Intuition, it

will be shown that the diffusion model represents the limit of more

readily comprehensible models of conventional type. With regard to

4
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the precise characteristics of the so-called conventional model, we

have quite a bit of latitude. The particular conventional model to be

discussed hare was chosen with some very specific criteria in mind.

We will now describe it, restricting attention to the simple assembly

operation of Figure 1 for simplicity, and will afterward discuss its

weaknesses and virtues.

To model the assembly or blending operation of Figure 1, we take

as primitive three increasing processes Ck " (Ck(t)' t > 0) satisfy-

ing klO) - 0 (k - 1,2,3). Call Ck the potential output

process for work station k, nterpreting Ck(t) - Ck(s) as the total

output (total mount of material k) that station k can produce over

the time Interval [s,ti if it is able to work without interruption

during that period. If blockage (in the case of input stations 1 and

2) or starvation (in the case of blending station 3) occurs, then the

actual output will be less (see below). Define X(t) =

for k - 1,2 and t > 0. Denoting by bk the capacity of buffer k

(0 < bk < -), we assune as given Initial contents Zk(O) such that

0 < Zk(O) <b k  (k - 1,2). A principle modeling task is to explain

how the contents process Z(t) - (Zl(t), Z2 (t)) is defined in terms

of the primitive model elmnts for t > 0. If there is no blockage

or starvation up to time t, then we have simply

(1) Zk(t) - Zk(O) + Ck(t) - C3(t) - Zk(O) + Lk(t)

4 for t > 0. Thus 1(t) a (I(t), 12 (t)) is called the net potential

6I6
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[V Inumt process underlying our system model. How can (1) be modified to

account for potential blockage of the input stations and/or starvation

of the blending station? Let Yk (t) denote the lost potential

output from station k (due to blockage or starvation) up to time t,

so that actual output from station k over the Interval [O,t] is

k(t)- Yk(t). Then the correct modification of (1) is

(2) Zk(t) - Zk(O) + (Ck(t) - Yk(t)) - ("3 (t) - Y3(t))

- Zk(O) + Xk(t) - Yk(t) + Y3 (t)

for k - 1,2 and t > 0. But now we obviously have the problem of

defining Y(t) (T (t), Y2 (t), Y3 (t)) precisely in term of primitive

model elemuts.

Before going further, we Introduce the critical final assumption

that Ck Is a continuous process for each k - 1,2,3. If Figure 1

Is interpreted as a blending ,'piration, then this assumption is non-

controversial, but If It rep asents an assembly operation for manufac-

tured Items, the continuity assumption constitutes a potentially gross

approximation of reality. In the latter case, our defense is that we

only seek to analyze i1l balanced high volume systems (see Chapter 6)

with relatively large buffers. One may then reasonably approximate

the cuoulative output from a work station by a continuous function of

time, and the content of a buffer may be viewed as an approximately

continuous variable. Be that as It my, with Ck assumed continu-

ous, It Is reasonable to require that

7
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(3) Yk  is continuous and increasing with Yk(O) i 0

for each k - 1,2,3. Then Z will be a continuous process as well by

virtue of (2). Finally, the intended meanings of Y and Z suggest

the key relations

(4) 0 < Zk(t) < bk for k- 1, 2 and t > 0,

i t
(5) f (b -Zk(s)) dyk(s) -0 for k-1, 2 and t>O,

0

t
(6) f (z 1 (8) A Z2 ( )) dY3(s) - 0 for t > 0

0

The meaning of (4) is clear, and (5) says that potential output from

station k - 1,2 is lost (Yk Increases) only when Zk- b.- Equiva-

lently, potential output from station k - 1,2 Is foregone or

sacrificed in the miniU u amounts necessary to maintain Zk(t) b<

for t > 0. In precisely parallel fashion, (6) says that potential

output from the blending operation is lost only when one or both of

the storage buffers is empty, and together with (4) this means that

potential blending output is sacrificed in the minium amounts

necessary to insure that Zk(t) > 0 for all t > 0 and k - 1,2.

We have thus far dodged the question of bow one defines Y

precisely in term of C and Z(O), while simply listing (3)-(6) as

necessary properties. It turns out, however, that these properties

uniquely determine Y. The following Is a special case of a

representation theorem for general networks (like that pictured In

- , .. . ., .- . -. _ .---_ , . " i "/ ' .i " - . . . "- ,-8



Figure 2) to be proved In Chapter 4. Let S (for state space) denote

the rectangle [O,b 1 ] x [Ob 2J.

(7) Theorem. For each continuous X and Z(O) e S, there exists a

unique Y satisfying (3)-(6), where Z is defined in term of Y by

(2).

There remains the essential task of specifying the stochastic

character of our potential output process C. A number of different

assumptions will ultimately be considered, but let us focus on the

following for the sake of concreteness. Assume that there is given an

lID sequence of positive random three-vectors

C - {( 1(n). C2 (n), C3(n)); n - 1,2,3...)

We now define C in term of C by means of

(8) k(n) =  (l) + Ck(2) + .. + Ck(n) , for n > 1 and k- 1,2,3

and by linearization

!i (9) Ck(t) -"([t+lJ-t) Ck([t]) + (t-[t]) Ck([t+l]),

where [x] represents the greatest integer less than or equal to x,

and k - 1,2,3. Interpret Ck(n) as the total potential output for

station k during the nth shift. Equation (9) my be interpreted as

-9
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saying that Ck increases at a fixed rate during each shift and

that this rate varies froa shift to shift. In other words, the total

K; potential output of a shift is random but it is spread u~fformly over

* .the shift.

We now present soe obvious and reasonable objections to our

conventional model, with a brief rejoinder to each.

(a) It treats cumulative potential output as a continuous function of

time; this is fine for continuous flow systems but not as good

for discrete item manufacturing systems. Our defense in the

latter case is that we will eventually restrict attention to high

volume systems where Individual Item are more or less

Insignificant.

(b) The Model's representation of Individual work stations through a

single potential outflow process is certainly crude. In the case

of stations populated by workers, for example, no formal distinc-

tion Is made between single-server and multi-server stations as

is comon In queueing theory. These differences must somehow be

expressed entirely through the distributional properties of

Ck. Again our defense is that these fins-scale features of

work center operations will be more or less insignificant for the

high-volume system of Interest.

(c) With the specific distributional assumption that we have employed

above, the distribution of the total potential work during shift

1n+ is independent of all that has transpired during shifts

1,2, ... , n. If the source of stochastic variability Is

10
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mechanical failure, for example, this mans that the probability

of a failure on day n+1 Is unaffected by the amount of wuork or

idleness that a machine may have experienced. This my be very

unrealistic, but we will be looking at conditions under which the

amount of Idleness at any given station is vanishingly eml, and

again we argue that the structural crudeness of our model Is

relatively unimportant.

*(d) Despite its simple appearance, our conventional model Is

relatively intractable, regardless of what distributional

assumptions one makes about C.* If specialized to the case of

two stations, for example, it is considerably more difficult to

analyze than analogous queueing models, like the K/GII queue

with finite waiting room.

This last point does not bother us, becaus e do not want to

analyze the conventional model. For us It Is just a stepping stone to

the diffusion limit. We could take limits of more finely structured,

high fidelity models, but the saw diffusion limit would eventually be

obtained, The virtue of what ma are calling our conventional model is

that it ikes for the simplest possible proof of the limit theorem

that Is our main product.

1.3 Results Obtained

in Chapter 6 ma will consider a sequence of production networks

Indexed b~y n - 1, 2, .... Heare and In Chapter 6, we append aIi~ superscript n to our previous notation to Indicate a quantity or

process associated with the nth system. It Is assumed that all buffer



sizes increase with n, and that n-1/2 Xn(n.) "- a* s n

where X(n)(n) is the net potential Input process for our nth

- system, X* is a vector Brownian motion (with some drift vector and

covariance matrix), and -> denotes weak convergence In an appro-

priate function space. As our main result, it will be shown that

(zln) y(n)) -> (Z*, y) as n .

where z and Y(n) are normalized versions (see equations (6.4)

and (6.5)) of the contents process and lost potential output process

of our nth system, Z Is a certain vector diffusion (reflected

Brownian motion), and Y is a continuous increasing vector process

associated with Pb.

In order to say sore about the diffusion limit 2*, let us ain

consider the simple assembly or blending operation pictured in Figure

1. The state space for the corresponding diffusion limit V* Is a

rectangle S pictured in Figure 3. In the Interior of 8, Vb

behaves like the Brownian notion 1* At the boundary, Z reflects

Instantaneously, the direction of reflection being constant along each

boundary surface as pictured in Figure 3. The meaning of this

boundary behavior will be explained, and the processes Vb and yT

will be precisely defined, In Chapter 4.

As a final task, we will begin development In Chapter 5 of the

analytical theory associated with our diffusion limit Pb. To explain

the character of this theory, let us restrict discussion here to the

case pictured in Figure 3, denoting by c - (ci) and A - (aij)

the drift vector and covariance matrix respectively of the underlying

12
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Brownian motion V. Also for simplicity, we restrict current

discussion to the existence and computation of the steady-state

distribution for Z, although som other analytical problm are

discussed in Chapter 5. Let us define the (constant coefficient)

differential operators

2 2 a ~ 2  2
(10) L 2- xiz c l  .

i-l jl i i i

SD (1 - -Fit, 2

and

(12) Dm 8  +..

Note that L is the elliptic operator associated with the underlying

Brownian motion 1', while Dk is a directional derivative in the

direction of reflection associated with boundary surface k in

Figure 3. In Chapter 5 it will be shown that Z* has a unique

stationary distribution U, and that 11 satisfies the stationary

equation

3
(13) 0-i Lfl(x) n(dz) + I k fix) (dx)

S kmlk

for all f c C2 (8), where vI, v2 v3 are certain boundary masures

concentrating all their mass on 31, 82, 83, respectively.

It is essentially here the story ends. We conjecture that (13)

uniquely determines both n and the boundary insures vk. No

14
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proof will be offered, nor do e suggest any practical scheme for

computing moments of n or other Interesting quantities from (13).

Nonetheless, work Is currently under way on these problems, and there

Is reason to belie" that they will be resolved in the not-too-distant

future.

15
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In this chapter ve present san conventions and results used

throughout this work. In section three of this chapter we prove a

probability result of Independent Interest.

2.1. Conventlons and Notations

Within each chapter, we will refer to a numbered display by its

number. Vhn referring to a numbered display in another chapter, we

will preflx the chapter umber to the display umber. For example,

Theorem 4.1 refers to the first display of Chapter 4.

Due to typographical coasiderations we will not use special

notation for vectors or vector functiou. fT eaumple, 0 my man

either the real umber 0 or the vector (0, *0, ... , 0) depending on

the context.

The symbol I will denote the real umbers. For example, RN

is the space of N-dimensional real vectors. The Interval 10,a)

will be denoted by 4 and R: will refer to the *-fold product of

4.

If a C 0 then I a maz(Ia, ... , tJl. This notation

will hold unless otherwise specified. Let f (f1It f2 t 9 fn)

where fk: [O,TJ R . Define

(1) MIf sup f(t) I:~ 0< t< T

where the value of T c R+ will be clear from the context.

16
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If X ls an arbitrary space and f: I ,R, thsn i f I Is defined

(2) If.s a p ff(x)j

If X has a topology, define C(X) as

(3) C(X) -f: X I such that f is Contimous)

If a,b cRN thsn a >b is definediby

(4) a> b If d only if %> bn for a-1,2,., .

We define a>b tosan a >b and a b. If f gasp to

am then f> g means that f(x) kg(z) forewry z L f >g

mans that f_ and fog.

Tb- symbols A and v are used to represent the ilins and

mapram operations respectively.

Let C be the space of continuous functions f: E * I4 .

The pair (Q,_) will always denote a measurable space and w a

generic element of Q. Suppose X: 0 + CF.

(5) Convention. X(w)(t) will be denoted primarily by X(t) and

occasionally by X(t,w).

Let v: 0 . [0,-] and define X(W) to sun

F:

1 17



.

-9

'Tf ) W ) for T(w) <
I 1 for T- S

This last convention is ilicitly used in Chapters 2 and 5.

2.2. So.. Propositions In Real Analysis

In Propositions 7 and 11, f and g will denote continuous

functions from 4g to L

(7) Proposition. If f and g are increasig and together satisfy

(8) >s on 18,tI

and

(9) f(s) -g(s) and f(t) -g(t) > 0.

Then there exists u c [s,t] such that f is Increasing at u and

f(u) > g(u).

Proof. If t is a point of increase for f then u - t satisfies

our hypothesis. Otherwise define u as

(10) . u a p{W C [0,t]; f is Increasing at w)

ine (10) implies that f(u) - f(t). Prthernwre, since the points of

increase form a closed set, it follows that f Is increasing at u.

Finally, observe that f(u)-g(u) * f(t)-g(u) _ f(t)-g(t) ) 0. Q.E.D.

,is

:,- ~..-.- .,.;..., .,-.'..-,•.-...- .. ". .•",. .•... ... .



(11) Proposition. If £ is continuous and f is defined by f(t)

! UPo < a < t g(t), then

(12) f is a continuous function,

and

(13) f(t) Sup g(s), where Qt (r c [O,t]: r is rational),
sCQt

and

(14) If f is increasing at t then f(t) " 5(t)

Proof. Parts (12) and (13) follow easily from the continuity of g,

and therefore only (14) will be proved. Suppose that f is

Increasing at t; then every e > 0 satisfies f(t+e) > f(t-c). It

therefore follows that

(15) fit+) sup g(s)•
S£ [t-e,t+gj

Line (15) sad the continuity of f and g together Imply that

f(t) - g(t). Q.I.D.

Let (Q,) be a masurable space sad let %t, t 0) be a

filtration of F. Suppose that 1, T: Q + C sad that 1(t),

,r(t) C -t Define w(t) a Supo < < (() "())+

19



(16) Proposition. The process W(t) in adapted to f., t > 0),

i.e., W(t) CA for t>O.

Proof. Elementary measure theory IWples that for a < t

(17) (X(s) - Y()) + 9 F

Flurtheriore, the apace of lf-measurable functions is closed under

the operation of countable supremm; hence lines (13) and (17) Imply

that Ut) C Ft. Q.E.D.

Let (U,._) be a msasurable space. Suppose that (Px, x c X)

is a set of probability easures an (U,]E), where I is a setric

space with mtric d. Let PX(f ) a*f f(u) 0%Z~).

(18) Proposition. Suppose there eists y c I such that

(19) . p Is p f(Q) - g(Q) 1  o.

Then

(20) Ila sup Jp(f) - 0I
+ y f A

where A 2(f e T such that If1S1).

20



Proof. Let Z x  , be the ladon-likodym derivatives of pX *

relative to the measure P + y. Then every f a A satisfies

(21) px(f) - Py(f) f f f(u)(gx(u) g s(u)) (Pz+PY)(du)

Line (21) implies that

(22) IP(f) - 9(f)1 < f Ig(u) - g(u)1 (Pz+Py)(du)
%U

<2 2 up IP*(Q) - Y(Q)I

Lines (19) and (22) together Imply (20). Q.3.D.

Let X(t) be driftless Bromalan otion on the real line.

(23) Convention. Let P' be the distribution on the path space of X

corresponding to initial state 1(0) - z.

Let r> 0 be given and define v by

(24) a laffs. x(s)j - r)

21
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(25) Proposition. Let x e (-rr) be given. Then there exists a

density f,(Sx) such that

t
(26) PX(< t, X(T) z) f f x(s,z) do for t>O0

0

and jZj r, and

(27) fi(,S) as a continuous function of z on the interval (-rr).

Proof. Consider the following rescaling of X:

(28) i*(t) i X(4r2 t)/(2r) for t > 0

Defne the stopping time T as follows:

(29) T inf~s: lz*(s)I .L

Lines (24), (28) and (29) together imply the Identity

2(30) (T, X*(T)) - (r/(4r2), X(T)/(2r))

Let Sg(s,s) denote the density of (T, X*(T)) corresponding to

the Initial state X*(O) -y. Line (30) implies the following

equation

(31) fx(S~s) - gxl,2rlsll4r2), s/(2r))/(4r2).

22

11

(31)f (sX) g (a/4r z(2r)/-4



!It now suffices to show that (T, X*(T)) has a density gx(S,z)

which is continuous in x e (-1/2, 1/2). Observe that X* is

driftless Brownian-notion with X*(O) = X(O)/(2r). Thus the symnetry

of driftless Brownian motion implies the equation

(32) 1xs,! 1 8 for x 1
2--

Therefore we need only show that gx(s, -1/2) exists and is

continuous in x. On page 267 of Ito and McKean [81 it is shown that

gx(s, -1/2) exists and has the following expansion

(33) g,,-1 - n ,exp(-n 1 s/2) 1in(nz + P)

n-1

The Weierstrass N-test shows that g,(s, -1/2) Is a continuous

function of x. Q.E.D.

Let r > 0 and K > I be given. Define Br  as follows

(34) B - k; nxn r)

Define Rk,j a subset of Br  by

(35) Lk,j (x e Br; xk - jr}, where k - 1, ... , K, and J -- 1,1

We now define a measure X, on Br by

23



1 K
(36) X(A) - Xf f A(x, 2 "-', x) dx,

J-1 k-i Rkj
dxk_ dxk 1 **o dxK

In other words, X is the measure which gives (K-)-dimensional

Lebesgue measure to each face Rk,j of Br .

Let W(t) be standard K-dimensional Brownian motion. Define

the optional time v by

(37) =inf(s: W(s) C Br)

(38) Proposition. Let Ixi < r be given. Then there exists a

density bh(s,z) such that

(39) Px((iW(r)) • Q) " f hx(s,z) d%(z) x ds
Q

where Q is a measurable subset of [0,-) x Br, and

(40) ha h (s,z) ho(s,z) for all a> 0 and z e B
, x+O

Proof. Observe that if we define ck,j by

(41) vk,J = mnf(s: Wk(s) - Jr) for k - 1,2,...,K and j - -1,1,

and
* 1

(42) A kqJ for k- 1, 2, ... , K,

q 24
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then

1 K K
(43) - A kj A Tk

Js-I k-i k-i

Since the ck,J are independent continuous random variables, it

follows that

I K
(44) Px((, W()) € Q) - I P1([ , W( )) c Q1 n [.g "

~j--i k-i

I K
SI I Px((,,w, )) Qkj) ,
J-i k-i

where Qk,j Q n [0,.-) x ik,J

It thus suffices to show that we can define a density h,(sz)

which satisfies (40) and

(45) P((tr, W(')) e Qk ) - f h (s,z) dX(z) x ds

Due to complete symmetry we can restrict our attention to R1 ,1 . We

need the following result from Feller [41. Define Qt(u,z) as

(26% )) - 1/2 . (--u.4nr) 2

- (zu+(4n+2)r)2
WCP 2t

Then

(47) FX(Wk(t) c A, .k > t) - f Qt(xk.v) dv
A

25
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where A is a measurable subset of (-rr) . Lines (43) and (47)

together imply that

(48) px((-, w( )) e Q 1 1 )

"f f2 (S,z1 ) Q (x 2 ,z 2 ) ... Q (x ,z K) X(dz) x ds

Observe that hz(s,z) can be defined by

K K
(49) h,(s,z) - X (r)( f (sz k) n Q) (z j)

k-1 i-iJ=
jok

The density bx(sz) then satisfies (45). Since Qt(zz) and

fx(sz) are continuous at z - 0, so must be h,(u,z). Q.E.D.

Let X(t) W(t) + ct and define - inffs: IX(s)l - r).

(50) Proposition. Let lxi ( r be given. Then there exists a

density h(s,z) such that

(51) p((., X(T)) e Q) f f h*(s,z) dX(z) x do
b" Q

and
(52) lzn h*(ss) .h8(s.) for a > 0 and a r"

z + 0 --

Proof. Observe that - is a finite stopping time for all x such

that lxl < r. Consequently the Wald likelihood ratio argument

implies
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(53) e((,. x(O) Q) - f ezp(- cc , - z's)) hx(s,,) dk(z) x d,
Q

Therefore

1h*(s,z) -exp(- (.-f cca - c'z)) h (s,z)x x

Condition (52) Is now obvious from the last equation. Q.E.D.

2.3 An Ergodic Theorem for Feller Processes

Let (0,E) be a measurable space and let (Et; t > 0) be a

* ' right continuous filtration of F. Suppose that S is a compact

metric space and that X - (X(t), t > 0) is a stochastic process from

0 to S which is adapted to (a, t > 0)/Boret (S). Furthermore,

suppose that the family (PR, z e 5) makes X Into a Narkov

process, i.e., every k c Bo l (8) satisfies

(54) P(X(t+s) e AKt) - PX(t)(1 (s) e A) a&e. pX

The following definition was derived from properties of Brownian

motion.

(55) Definition. A state x c S Is diffusion-like for X if there

exists a neighborhood base B of closed sets such that every 3 € 3

satisfies conditions (56) and (57):

(56) PY( < ) for y cl,

-I

where v infls; X(s) e bE).
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(57) 1la sup 1pY((-. C() A) -PX(c, Er)) e A)I 0

where A is the Dorel subsets of the product topology on Rt x 8B

induced by the usual topology on 1+ and the relativixation of the

topology on S to ba.

(58) R mark. Suppose that the following conditions are mt:

PY(( 1 , E(r)) cA) - f p t,:) X(dt x dz) for y near ,

A Y

and
ILa p y(t,8) - Px(t,8) a*** X•

yy

Then Scheff6's Lmna (see Scheffd [131) implies that (57) will be

satisfied.

(59) Theorem. Let X be as described above. In addition, suppose

that X Is a Feller process such (for a definition of Feller process

see relman [21) such that

(60) For every non-empty open set A there exists t > 0 such

that PX(X(t) c A) > 0 for every z c S,

(6i) 1a gY(f(1(6))) I (f(M(t))) whenever f C C(S) ,
yx

st

and

(62) The diffusion-like points of X are dense in S.

Then I Is an ergodic process.
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The rest of this section is devoted to proving Theorem 59.

(63) Proposition. Let X be a Feller process on S such that

(64) For every measurable set A with non-empty interior AO

there exists u > 0 such that PZ(Xlu) c A) > 0 for every

X C S.

Then for every such A there exists a < 1 such that

(65) PZ(> t) < t for t > 2u and x s,

where -r nf(s: X(s) c A).

Proof. Let u satisfy (64) for A, and let f(x) = PX(() e AO).

Since X is a Feller process and AO open it follows that

~(66) .lin f(y) =lst PY(X(u) e AO > pe(X(u ) e AO) =f(z)•

y+x y+x

Therefore f is lower semi-continuous on S. Since S is compact, f

achieves its minimm at z0 a S. Thus infxeS f(x) - f(z o ) i 1-p > 0.

Let t > 2u be given. Set n [t/(2u)1/2. Using an obvious

induction observe that

29
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(67) PZ(v > t) < PX(u) c A ,., X(2nu) c A )

Ac

whr - /2) Q.L.D.

(6) _roostin.LeXbeaele process onSwihsatisfies

(61) and lot D be a closed subset of S. Suppose x is a

diffusion-like point and that xe Dc. Then the fnto tyD

5 PY O cD) is continuous at x uniformly In t, I.e., for e > 0

t ereists a closed neighborhood V of x such that

(69) SUP sup IP t(Zi.D) - t(z2 D)I < C

Proof. Since x is diffusion-like, z has a closed neighborhood 3

disjoint from D that satisfies (56) and (57). Define v Iinf (s:

XEs) c83). Since X has continuous paths and 53 in closed, It

follows that -v to a stopping time. Furthermore, pathwise continuity

Implies

(70) Pt(y,D) -PY(X(t) c D, I < t) for yal.

F Apply the strong IMarkov property to (70) to obtain

K(71) Pt(yD) - R(P t...(X(1v), D))
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Condition (61) and the fact that D is closed together imply that

Pt(y,D) is upper seml-continuous In (t,y) and thus measurable.

Furthermore Supt,y JPt(y,D)j < I . Therefore Proposition (18) can be

applied to (71) to obtain (69).

(72) Proposition. Let I satisfy the conditions of Theorem (59).

Then every closed subset D satisfies

t i1"'. "" p S It (x i, D ) - Pt(x 2 ,D ) 0
t x x1,721 S

Proof. For D - S the propositlon is trivial, so suppose DC is a

non-empty subset of S. Condition (62) Implies that there exists

x e Dc vwhch is diffusion-lika. Let c > 0 be given. Proposition

(68) implies that there exists F7, a closed neighborhood of x, which

satisfies (69). Lot x1 ,x2  3 5, and let 11 ,X2  be independent ver-

slone of X such that Xl(o) -x 1  and X2(0) - x2 . Define T as

follow:

(74) T inf(s: (X1(s), 12(8)) C 7 x F)

Observe that

(75) Pt(xi,D) - P(xl(t) e D, T > t) + P(X (t) e D, T < t)

and

(76)2 2_(76) Pt(z 2 ,D) P(x2(t) c D, T > t) + P(Z2(t) cD, T t) .

31
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It Is easy to verify that the coupled process (11,12) satist4es

the conditions of Proposition 63, and therefore there exists an a < I

such that

(77) sup P(T > t) < t  for t > 2u
Zl'x2 1 S

Lines (75), (76), and (77) together Imply

(78) IPt(zi,D) - Pt(x2 D)I

" < IP(x (t) • D, T < t) - (X2(t) c D, T < t)j + 4t.

Since T is a Narkov time It follom that

(79) P(1I(t) e D, T.< t) - [I{(T < t) p(J1 (t) e D T)]

(where ET a O ((X (),x2(a)), 0 < a < T))

- I1(T < t) Pt-T(XI (T), D)I

It similarly follow that

(80) P(12(t) c D, T < t) - E[I(T < t) Pt-T(X (T), D)]

LAne (69) now Implies that
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(Si) xIP2(t) c D, T < t) - P 1(t) C D, T < t)

Z[ [I(Tit ) IPtT(Z2(T), D) - PtT(ZI(T), D)IJ

:i~< ltll ) z < .

Therefore It folow from (78) and (81) that

(82) SUP IPt(z1,D) - Pt(zD)I < C + a
.-. z I , 2  6

Since g is arbitrary, equation (73) follms easily from (82).

(83) Proposition. Let Pt(z,o) be a Ibrkov kernel on a compact

metric space S. Suppoe Pt(z,*) satisfies (73). Than there

ezist (tn, n > 1) such that tn + a and a probability measure

11 on S which together satisfy

(84) n .sup IFS I t(z) -n(f) 0 for f e C(S)
','n +, z e t n

Proof. Viz y c S. Since S Is compact, the family of measures

(Pt(y,°), t > O) Is tight. Therefore, there ezist (t u , n>1)

and a probability masure n which together satisfy

(85) P ty o ) -- > .) as n.-,

and

(86) t +- - n .
36n
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Let f c C(S) such that 0 < f< 1. Line (85) Implies that

(87) Pt (yf) * T(f) as n *-.

Let u be an arbitrary Integer. Set Dk a {x; k-i < uf(z) < k),

and

(k1 k

Lines (73), (85) and (86) together Imply that there ezists n0 such

that

(89)- su v -Pt ( 7,Dk) P(, D0 / for n > n
z c 3 k-

(90) P(Y - T()I  < 1/, for u > no

Therefore, the triangle inequality Implies

(91) IPt, .f) -( , ,, _ It (z,€f - ,.1+ I+,pt '". - t (y. l

I y, 3 - I + 1 t (yf) I- 1f)
U n

2< lUu+u/u + I/u+ 1/u- 4 n for n In O.

The arbitrariness of a Iplies (84) for f c C(S) such that

0 < f < 1. The general case now follow easily from the compactness

of S.
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(92) Propositiou. Let X be a Markov process on a compact mtrlc

space S. Suppose X satisfies (60), (61). and (84). Then X is an

ergodic process.

Proof. We need to show that

(93) lim Pt(x,f) - l(f) for x a S and f e C(S)
t +-

and

(94) el(f) > 0 for f e C(S) and f > 0

Let f e C(S) and let c > 0 be given. Condition (84) implies that

there exists s such that

(95) sup P (z,f) - n(f)l < .

Let t > s be given. Then every y c S satisfies

(96) ',") - 1(f) < f Pt_,(y, dx) f.(xf) - 1(f)

f Pt_,(y, dx)e c

!S

Therefore equation. (93) must hold.

K Finally, suppose f e C(S) and f > 0. Observe that condition

(61) implies that Pt(.,f) e C(S). Therefore (93) Implies

F (97) w(f)- la P B(x,f)

- li f P(x,dy) p (y,f )  11(dy) Pt(yf)

54.8 5

Lines (60) and (97) together imply (94). Q.E.D.

r3
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Theorem 59 can thus be proved by applying in sequence Propositons

72, 83 and 92.

2.4 Weak Convergence in Function Space

Let (0,.,P) be a probability space. Let (N,d) be a metric

space and let 7 be the Borel sets of M.

(98) Definition. Let X be a mapping from 0 to N such that

IrI(F) c B. Then we say that X is an *-valued random variable on

(99) Remark. We denote the above relationship by either X c B/F or

X e B. We use the latter notation only if _ is clear from the

context.

(100) Definition. Let (Xn, n > 1) be a sequence of N-valued

random variables defined on 0. Suppose that every closed subset D

of M satisfies

(101) lim P(K n  D) <F(x.D)

'a..

for some N-valued random variable X• We then say that (Xn , n> 1)

converses weakly to 16. We denote this by

(102) Xn-> K, as n -
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Consider the particular case where N - CN, d Is the metric

given in Whitt [141, and F is the a-field of Borel sets on CN .

For T > 0 define rT: C1 + C[0,T] as follows

(103) rT(x)(s) - x(s) for x e CN and a e [0,T]

(104) Lemma. Let {X, n > 1} be CL-valued random variables.

Then (X, n > 1) converges weakly to X. if and only if for

every T > 0 the sequence {rT(Xn), n > 1) converges weakly to

rT(X.).

For a proof of Lmema 104, see Whitt [14).

L
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CuAPtU 3

_10JCTICS I XS

In this chapter we define precisely our general production

network models, examples of which were discussed in Chapter 1. In the

first section we describe the deterministic features of such systems.

In Sections 2 and 3 we propose two different ways of modelling the

stochastic structure of a production network.

3.1 The General Model

u We begin our description of the general production system by

specifying its network structure. The network consists of K+1

stations indexed by the set k - 1, 2, ... , [+1. Stations 1, 2, ... ,L

(L < K) are called external stations. We specify the system's flow

structure by a map o: {1, 2, ... , K) + (L+I, ..., K+1). Interpret

o(k) as the successor station at which output from station k is used

as input. Thus

(1) n(k) R (j c (1, ... , K); o(j) - k)

is the set of predecessors whose output is used directly as input at

station k (k - Ii, ... , K+1).

It Is assumed that a(k) > k, and a maps (1, 2, ... , K) onto

{L+I, ..., K+1). These two conditions guarantee that our network will

be an arborescent structure whose terminal station is K+1. Thus

inputs from the external stations (1, 2, ..., L} are combined byL stages into inputs for the terminal station [+1.
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It Is assumed that for each station k (k < K+1) there exists a

finite output buffer of size bk. Furthermore, me associate a

potential output peocess Ck - (k(t), t > 0) with each station

k. The process Ck is assumed to be continuous and increasing with
- 0. Interpret k(t) as the total production of station

k through time t, providing that station k works without

impediment during the time interval [O,t]. We now define the net

potential input process

(2) J.(t) - - a(k)(t) for t > 0 and k- 1, 2, ... , K.

Interpret Xk(t) as the potential change in the kth buffer's

inventory from time 0 to time t. Thus, if we let Zk(t) denote

the kth. buffer's actual inventory at time t, then we have

(3)Zk(t) ,Zk(0) +.Xk(t) , t > 0,

providing that neither station k nor station a(k) in Impeded

during the interal [O,tI. We need to modify equation (3) so that it

is unconditionally valid. Thus we now introduce the lost potential

output process Yk(t). The process Yk(t) should he construed as the

amount of potential output station k loses due to either starvation

or blockage during [0,t]. We can now express the actual output

process for station k by the difference Ck(t) - Yk(t). Therefore,

the actual input process to buffer k is given by the expression

k(t) - Yk(t) - (Ca(k)(t) - Y(k)(t)). This simplifies to

39



Z.(t -Y~t +YGk(t). Thus the proper generalization of equation

(3) is

() Z.k(t) !Zk(O) + 'k(t) Yk(t) + Yck)(t),t> an k<

We denate by Z and Y the vector processes (Zi. eee.., 71. aund

(Y1 9 Y211 Soo, YK+1 ) respectively. Of course the issue of how to

define Y precisely has again been skirted. We begin with the

reasonable requirement that

(5) Ykis continuous and Increasing, with Tk( - 0 for all k

Furthermore, the intended meanings of Y and Z suggest that they

jointly satisfy

(6) 0< Zk(t) <b.k for k-i, 2, .,K and all t>O0.

t
(7) f [bk7Zk(s)J d~k - 0 for k 1 , ..., L and all t > 0.

0

t
(8) f ((b k - Z k ()) A Z(a)] d'k~'s) 0 for k.-n L+1, **., K

0 jeJ(k) ZJand all t>O0,

(9) f A Z() y+8 - 0 for all t > 0.

What we will now see Is that (5)-(9) can actually be used to define T

and Z In term of I and Z(O) in precise mathematical term, thus
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completing the specification of the model's (non-probabilistic)

structure. The following representation theorem will be proved In

Chapter 4. Here and later we denote by S the state space of the

contents process Z:

(10) S [0,bj .. x [0,bK- [O,b]

(11) Theorem. Given X continuous with X(0) - 0 and Z(0) c S,

there exists a unique Y satisfying (5)-(9) with Z defined in terms

of Y by (4).

To complete our model specification, we need to impose distribu-

tional assumptions on the vector process C. Possible distributions

for C are presented in detail in the next two sections of this

chapter.

3.2 A Random Walk Model

One way to generate the process is to construct it from a

sequence of lID random vectors {C(n), n.> 1} by summation and linear

interpolation. That is, define Ck at integer times m by the

equation

(12) k(a )  (n)

n-i

and define Ck at non-integer times t by linear interpolation,

naely
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(13) Ck(t) - ([t+lJ-t) kCtJ) + (t-[tJ) Ck(lt+1i)

Here [z] denotes the greatest Integer less than or equal to x.

As was mentioned In Section 1.2, one can Lntozpret Cjk(n) as

the total potential output of station k during the nth shift.

Furthermore (13) may be viemd as saying that work proceeds at the

fixed rate of Ck(n) units per shift. Finally, note that the

components of the random vector C need not be an independent not.

Homver, we will assume in Chapter 6 that ({(n),-n > 1) generates an

X process which is fully K-dimensional.

It Is of interest to note that if K- 1, then this model

represents an extension of the classical discrete-tme dam model to

j continuous time. A good reference for the dam probla Is Moran [101.

3.3 A Random Environmnt Model

It Is useful to conceive of the random rate vector C(n) as

being determined by the "working eviroament" of the nth shift. This

morking environment concept allows us to generalize the model of

Section 2 In the following may. Suppose that each working environment

persists for a random period of time and that work proceeds at a fixed

rate for the duration of each working environment. Furthermore ma

will allow for working enviromnts to influence one another. There

are many Interesting ways to Implement this model. For one specific

alternative, consider the following nodel. Let B - (0(t), t > 0) be

a continuous-time stationary Markov chain with states 1, 2, ... , N.
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Let r(1), r(2), •.., r(M) be positive K+1 dimensional vectors, and

define

t

(14) k(t) f rk(e(s))ds , for k - 1, ... , K+1 and t > 0.
'" 0

Equation (14) may be interpreted as saying that e(s) is the

state of working environment at time s, and that the kth station

works at rate rk(e(s)) at time s. Since 0 is a stationary,

finite state Markov chain, it is possible to recursively define the

transition times to the successively visited states. That is, define

ToB0 and Tn recursively by

(15) Tn B inf(s > Tn_I; 0(s) e(Tn_l)} , for n > 1

Nov define the nth holding time Tn by

(16) In Tn+I -Tn' for n> 0

Furthermore, there exist strictly positive constants X(u), I < a < M,

and an M x M transition matrix Q which jointly satisfy

[ (17) P(O(T0 +,) J ,. rn > tIO(Tu) - i) -19(•-T(i)t

for t > 0 and ,j a (1, 2, ... , Mt),

and
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(18) Qi , for 1 - 1, 2, H., .

The interested reader can refer to Chapter 8 of ginlar [31 for a proof

of (17) and (18).

!I
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CEAPTER 4

TM REVLUCTIC KAPPIM

We take as given integers K > L > 1, and a map a: (1,2...,K}

L {+1, ..., K+1) such that a(k) > k and a maps (1, 2, ..., K)

onto (+1, 9.., K+1}. Also taken as primitive is a vector b (b1,

...,bK) with bk ) 0 for all k. Let CK be the space of

continuous functions x: [0,-) + RK, endowed with the topology of

uniform convergence, on compact Intervals. Component functions are

denoted xj(t) for t > 0 and J - 1, 2, ..., 1 Let CS be

the set of x e Cy such that x(O) e S.

(1) Theorem. For each x e CS  there exists a unique pair of

functions y e CK+ 1 and z a CK satisfying

(2) zklt) Xk(t) - Yk(t) + Yo(k)(t), k - I, ... K and t > 0

(3) yk(i) Is Increasing, with yk(O)- 0 (k - , ..,+),

* (4) z(t) , S t > 0

t.
(5) f (bk  k(s)) dyk(S) 0, k- 1, ...,L and t 0,

44
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(6) f [(bk-Zk(s)) A j(,)] dy(s) -0, k- , K and

0 JIll(k) t > 0 >

and

t
(7) f [ A zj(s)] dYK+l(,) - 0 , t > 0

0 jH(K+1)

Moreover, setting y - 4#(x) and z - #(x), we have the following:

(8) Both 4 and * are continuous mappings on C.

(9) Fix x c Cs  and T > 0. Define x*(t) 3=z(T) +x(T+t) -

x(T), y*(t) S y(T+t) - y(T), and s*(t) a :(T t). Then

y* - 4,(x*) and z* -,( )

(10) Suppose x - x' on [0,t], then 4(x) - 4x') and

O(z)- ,(x') on [O,tl.

The proof of Theorem 1 is given in Sections 1, 2 and 3. In

Section 4 we produce a convenient bound for y. This bound will be of

interest only in Section 5.4.

Convention. For the remainder of this chapter the symbol a(k), when

used as a subscript, will be shortened to simply a. For example,

'a Y Y,(k) or XO(k) z, and so on.

4.1 Ixietence and Uniqueness

We begin by proving that conditions (2)-(7) are equivalent to the

conditions

46
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(11) Yk(t) sup (zk(s) + ya ()o < a< t
and t > 0

(12) yk(t) - sup v (y+(s) -x(s)) V (xk(@)+Ya(s)-bk) + ,

0 < s < t jdll(k)

L+1<k<K and t>O,

and

(13) sup v (y(s) - (V))+
0 < s < t jell(K+1) "

Suppose that y satisfies (2)-(7). To verify the forward

implication we start by showing that conditions (3) and (4) Imply the

weaker conditions,

(14) yk(t) sup (xk(s) + ya(s) +k)+

-t~ , k 1,2, ... , a
• t>O,

and

(15) yk(t) > sup v (yj(*)-zj(s))+ L < k < K+1 and
0 < s < t jeJ(k) L - a

t>O•

Observe that 0 < z (t), j c 11(k), implies that Yk(t) > yj(t)-xj(t).

Furthermore, since Yk(t) > yk(s) > Yk (0) ON 0 (t > 2 > 0), it is now

obvious that yklt) - AjeflkllYj(S)-zjl8)) for a e [O,t]. The last

line is equivalent to condition (15). In similar fashion, it can be

show& that (3) and (4) Imply (14). Note that (14) and (15) together

imply
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: (16) yVlt) > @up v (yj(*)-Zj(s)) + v (xkCs )+YMCB)-b k)+
i~ ~ < a _.< t jerl(k)

L+1 < k < K and t > 0

Fix k e (L+I, L+2, ... , K); we wili now prove that (6) and (16)

together imply that Yk satisfies (12). Begin by defining -

sup(t > 0: yk satisfies (12) on [0,tJ). The definition of v

implies that (12) is satisfied on [0,). Suppose in contradiction

that v < -. Then by the continuity of z and y it follows that

(12) is satisfied on [0,,]. By virtue of (16) and Proposition 2.7

there exists 0 > - such that v0 is a point of Increase for

Ykand

bk)k

yk(.O) > sup v (yj(s)-zj(s))
+ v (xk(s) + y(s) -

+

0 <'go 0Jl(k) J

The last inequality Implies that (bk'zk(co)) AjHl(k) zJ(O) ) > 0, and

thus the continuity of z Implies that there exists 6 > 0 such that

(bk-zk(s)) Ajen(k) sj(a) > 0 for 9 € [e0-6, 0+61. Consequently we

now obtain the inequality

0

f bk-Zj5 A ,j(,) dyk(f) > 0
0 ojn(k)
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The last inequality contradicts (6), and therefore v - -. Thus yk

for k - L+1, L+2, ... , K, satisfies (12) on [Od). In similar

fashion it can be shown that (5), (7), (14) and (15) together imply

(11) and (13).

To show the reverse implication, begin by assuming that y

satisfies (11)-(13). It is easy to show that (11)-(13) together imply

(3) and (4). Fix k c {L+I, L+2, ... , K). The function Yk

satisfies (6) if and only if the set (t:(b-zk(t)) ^Jen(k) zj(t) > 0}

has yk measure 0. By the continuity of z, it therefore suffices

to show that y increases at t only if (bk zk(t)) AJII(k)

z (t) = 0. Suppose that ykis increasing at t, then yk(t+) > Yk(t-)

for e > 0. It now follows from (12) that

(17) yk(t+e) " sup v (yj(s)-xj+())
t-e < al < t'le jell(k)

V (zk(s)+y y(s)-bk) + > Yk(t-E) > 0

Since yk(t+e) > 0, we can omit the "positive part operator" from

(17) to obtain

(18) yk(t+C) - sup v (yj(s)-xj(s)) v (xk(s)+y (s)-bk).
t-c < a < t~ J cIk)
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Since x and y are continuous, we can let e * 0 in (17) to get

yk (t) V jl(k) (yj(t)-xj(t)) v (xk(t)+Y t)-bk). Therefore

(bk-zk(t)) AJcfl(k) zj(t) - 0. This shows that (11)-(13) imply (6).

In similar fashion conditions (5) and (7) can be verified.

From now on we will only consider the question of existence and

uniqueness in terum of conditions (11)-(13). Before we can begin, we

need to introduce a great deal of new notation.

For j - 1, 2, ... , K+l define a chain to station j to be an

ordered set of indices c - ( ' .121 , " Am) which satisfies

i

(19) 1 < i<L, "t j

and

(20) tk-l C 11(k) for k 2, ... , a

Define C(J) to be the set of all chains to J, i.e.,

(21) C(J) (c: c satisfies (19) and (20))

Because a(k) > k the elements of any chain are necessarily distinct.

We will say that our network is H-stages long if the longest

chain to K+1 has M elements, i.e.,
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I
(22) M max(card(c): c e C(K+I)}

Define the stages of a network in the following way.

(23) S(M) S {K+I}

and

(24) S(M-n) {J: J c 11(k) for som k e S(M-n+l))

for n=I, ...,l4-I

Define K(n) for n 1 1, ... , *-i as follows:

(25) 1(n) S(n+l) - (1, 2, ... , L)

In words, E(n) is the jet of stations which receive inputs from

S(n).

We now introduce the iportant inequality constraints

(26) yk(t) < sup (xk(s)+y(s)-b,)+ for k=1,...,L ad t>O,i.:0 0< 8< t

[ +

(27) ) sup v zv (X(8) -bk+
Yk[) <-0 < s < t JdT(k)r'o for k - 1*1, ... , K and t > 0

and
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1

(28) yK+1 (t) < sup v (y (s)-x (8))+ for t > 0
0 < a < t JdI(k)

Let U be the class of positive, continuous, increasing (component-

wise) vector functions which satisfy (26)-(28).

For I - 1, ... , *-I define h(I): U + U and g(l): U U as

follows:

(29) (y)(t)

sup V (yj(5)-xj(s))+ v (a) for k e E()
0 < a < t j en(k) Y

Yk(t) , for k i E)

and

(30) gi (y)(t)

!+

sup (xk(s)+yo (s)-bk)+ v yk(s) for k e S(H-t)
0< s < t

yk(t) for k d S(.-I)

(31) Remark. It is easy to verify that h(±) and g preserve

the inequalities (26)-(28). Furthermore, if y satisfies (1)-(13)

on [0,T] then g()(y) - h(J)(y) Y on [0,T].
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Now define : U.U and G: U .U by the relations:

(32) R(y) a h (M '1) • h(*-2) •-.•h(l)(y),

and

(33) G(y) - g(M -I) * g(M- 2 ) 9 *.° * g(1)(y W

(34) Remark. H and G inherit from h(l) and g(l) the prop-

erties given in Remark (31).

Our iediate goal is to show that if y e U satisfies (11)-(13)

on [O,TJ then (G.H)(y) satisfies (11)-(13) on [0, T61 where

6 > 0. We begin this task with the following remark.

Remark. Suppose that y satisfies

• I1-1

(35) sup v (y4(G)z(s))< Yk(s) for k c u 1(n)
0 < a < t j er(k) -- n--

and t > 0. Then for k c U I (n), (1)(y) satisfies (35) fori'. s~~ t > . Thnork€ --- , )y

t>O.

(36) Proposition. For k e (L+I, ... , K+I}, Na(y) satisfies (35)

for t > 0.

Proof. Use the previous remark recursively to deduce that Bk(y)

satisfies (35) for k e Finally, note that the surjective-

ness of a implles that U WI (L . K+1}.
W1(n
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Define to be the subset of U which satisfies (35) on

109T], ie.,g

(37) {y cU: for k - *, ,+l, yk satisfies (35)

on (OTJ)

(38) Proposition. Suppose y e U and

(39) y satisfies (1l)-(13) on [0,TI

I

and

K
(41) sup We I )-z(s 2 )< A b~

T s<1<12 < T+6n-

tCt

Then for every It (1, 2, * gi _ (Y) C Ls (T)

Proof. We need to prove that for k = . +I, .K (.) (Y5)

satisfies

(42) sup v (I)(8) -z(s)) + <:. o<s<t Jcil(k)
0 < < for t c (0, T+61

5
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Observe that (42) is a trivial consequence of (40) if k 4 S(N-sl).

Suppose that k c S(M-t+1) and let t g [0, i8]. Since 5(lY) - Y

on [O,T], it can be assumed that t e [T, T+61. It suffices to show

that j n 1(k) satisfies

(43) sup (S i)(y)(.) - <j(.+_ ,g) ()() .
T<s<t

Let a c [T,t]. If g ()( ) t yj(), than

g.t)(y)(.) - -j(8))* - (yj(.)--j(.)) +_,() < ()(y)(t)

if g (y)(s) > yi(s), than there exists u c [T,s] such that

1t) + Yk(U) - bj. Therefore

( y)(s)- z1(s))
+ " (xj(u) - xj(s) + yk(u) -bj)+

,I
(A bu - bj + Yk(u)) Yk(u) < g ,(t)

Consequently (42) mut be valid. Q.LD.

(44) Corollary. If y a U satisfies (39)-(41) then G(y) -L 6.

T- proof of the corollary foliow easily frau recursive une of

Proposition (38), and therefore will be omitted.
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immark. If y c U satisf les

(45) Sup (Xk(a) - ( a)  b +SO<s<t Yk

for k • uIl- S(-n) and t> 0, then for k a u 1  S( N - n), (1)(y)

satisfies (45) for t > 0.

Also observe that the surjectiveness of a Implies that

U * - Sl-n) - {1 2, 00*9 K).

Now use the previous remark recursively to deducG the following

proposition.

(46) Proposition. If y c U than Qk(y) satislfes (45) for

k-i, .. , K and t > 0.

We now Introduce the following important result.

(47) Proposition. if y c U and y satisfies (11)-(13) on [0,T],

than (G.R)(y) satisfies (11)-(13) on [0, T+61, where 6 satisfies

'i K

7, sup x(s1) - x(s211 < A bn
T I < s 2 < n-

Proof. Remark (34) and Proposition (36) together guarantee that Rly)

satisfies (39)-(41). Corollary (44) guarantees that (G.)(y) c

L+ 6.9 Proposition (46) guarantees that (G*3)(y) satisfies (45) on
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[0,.). Remark (34) Implies that (G.)(y) e U. Observe that

(G-8)(y) e LT 6 n U and condition (45) together Imply that

(G.E)(y) satisfies (11)-13) on [0, T+61. Q.e.D.

Let A and N be defined as follows:

(48) A(s) = sup{6 > 0; sup Il lst)-z(s 2 )U < C}

and
K

(49) N - [T/A( A b)] + I
n-I

Remark. When necessary we will append arguments to &(C) and N to

Indicate their dependence on x and T.

(50) Iamma. (G.H)N(0) satisfies (11)-(13) on [0,T).

Proof. Observe that 0 e U, and thus Proposition (47) implies that

(G.I)(0) satisfies (11)-(13) on [0, MAK b Now by Induction

the result will follow. Q.E.D.

Define *(x) as follows:

(51) *(x) - (G-e) N(0)

Due to typographical considerations, we will often use y =

except when x is allowed to vary.
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We will now show that +z) is the unique element of _U which

satisfies (11)-(13). We begin by showing that +(z) is the "least"

solution. Observe that if w c U which satisfies (11)-(13) on [0,T],

then (GoB)(v) - w on [0,T]. Since GeR is a monotonically

increasing operator, it follows that

N
(52) 4,(x) * (G.E) (0) < (GelR)(w) v on (0,TI

The following remark is a direct result of Proposition 2.11.

(53) Remark. If w satisfies conditions (11)-(13) on [0,T] and

wk  s increasing at t c (0,T] then-either sk(t) - bk, or there

exists j c 1(k) such that z(t) - 0.

* For the remainder of this section, let y - +(x) and w e U,

such that w satisfies (11)-(13) on [OTJ. The functions y, w

satisfy the Important order relationship given in the remark below.

ow

(54) Remark. Suppose that for t c [0,TI, zl(t) 0 0 and wa(t) >

yo(t). Then 1(t) > Yk(t).

The next proposition is essential to the proof of the uniqueness

of Y.

(55) Proposition. If the functions y and w given above satisfy

(56) y -v on [0,1,
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K
(57) sup U5(8) - zw(s2)1 < A bn/2

- 1-92st -

and

(58) there exists k c (L+I, ... , K} such that z(t) - 0

then w.(t) - ya(t).

Proof. Suppose in contradiction that wa(t) > y (t). Remark (54)

implies that wk(t) > yk(t). Proposition 2.7 now Implies that there

exists t1 c (T,tJ such that Wk(tI) > Yk(t) and wk is increasing
at y[. Remark (53) implies that either zV(t) bk  or there exists

k (Ik) such that w ) - 0. Conditions (57) and (58) together

disallow the former possibility. Therefore, we deduce that there

exists kI e 11(k) such that %J I - 0 and ,(t,) > yk(t,)

Observe that tI and kI  satisfy our hypotheses on k and t.

Therefore by Inductively using the previous argument we can deduce

" that there exists (k1, k2 , ... kr) and (t1, t2, o.. tr) which

satisfy:

(59) zw (t)- 0 and Wk t.l )> (t) , 1J s, ...,

a i J-

(60) k - where ko - k and - 1, ..., r

J -

(61) tj (-r, tj_ where to - t and .j - 1, ... , r

and

(62) k € (1, 2, ..., L)
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Condition (59) and Remark (54) together Imply that ukr(tr) > Ykr(tr).

By Imitating the primary argument, we deduce that there exists

tr+1  (,tr] such that wkr(tr+I) > Ykr(tr+ ) and that 'kr ts

Increasing at tr. 1 . Remark (53) Implies that sxktr.1(tr+I) - bk 1 .

But the equality zr+I(tr) - 0 and condition (57) imply that

Sz(ir+1 ) S ZlW_(t r ) + bkr/2 < bkr. This contradiction implies that

our Initial assumption is wrong. Therefore wok)(t) - yo(kt).

Q.I.D.

(63) Lama. Let y - +(x), and suppose that v eU satisfies

(11)-(13) on [0,TI. Then y - w on [0,T).

Proof. Set v = sup{t < T: y - w on [0,tj}. The continuity of y

and w Implies that y - w on [0,dJ. Since sw is continuous

there exists t > vu such that zw  satisfies (57). Now define

(64) a1. max((-I) u (n for which there exists 6 > 0 such that

wk(s) - yk(s) whenever a [0; v+61 and

n
k, u

Suppose in contradiction that A < I-. By definition of I there

exists k c S(N-t-i) and to ' (i,t] which satisfy 0 < yklto) (

wk(tO). Proposition (2.7) Implies that me my asum without loss of

generality that wk I Increasing at t o . Remark (53) Implies

that either
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(65) 2 (to) -b

or

(66) Sk(t 0 - where k0 c r(k)

We will now show that only (66) Is possible. If k - K+1 then only

(65) is possible. If k < K+1 then suppose (65) Is true. We obtain

(67) bk - z (t 0 ) - zk(to)-vk(t)4F(t 0 )

. (kto)-wk(tO)+ya(tO) < xk(to)-Yk(tO)4Y (t0)

Line (67) Implies that < z(t0 ) < bk . Therefore u deduce

that only (66) is possible. Proposition (55) now Implies that Wk(t0)

- Yk(to), but this contradicts our asuaption that wk(tO) > Yk(tO).

Therefore our initial assumption that I < *4-I sust be false, and

thus I - M-1. The definition of I Implies that there exists 6 > 0

such that w - y on [0, %+61. The last line contradicts our defini-

tion of w. Therefore v - T and thus w - y on [O,T). Q.E.D.

4.2 Continuity of the Mapping

We begin by defining the mapping *: CK * CK by

(68) k(X) L xk - k (z) + ol) , for k= 1, ... , K
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(69) Theorem. The mapping x . ( (x), #(x)) is continuous from

CK to C2K+I with respect to the topology of uniform convergence

on finite intervals.

Proof. Since C2K+i is a product space, it suffices to show that

both 4Px) and #(x) are continuous. We begin by showing that 4(x)

is continuous. We will now interpret h W), g(t), R and G as being

mappings from C2 +1  to C2+I in the following way:

h (y,x) = (y), x) for t 1, ... , N-i ,

g (y,x) (g y), x) for 1- 1, ... , M-i

B(y,X) - (M(y), Z)

and

G(y,x) - (G(y), x)

where h(A)(y), g()(y)i 1(y) and G(y) are defined by (29), (30),

(32) and (33). Since the continuity of mappings is preserved by

composition, it follows that H and G are continuous as long as

h( and g( ) are continuous maps for I e (1, ... , N-l). We will

now prove that h(1) Is a continuous map. Let T > 0 be given. We

need to show that h(l) is a continuous mapping on C2 K+I(o,T].

2K+1
Let (yz), (y',z') I C [0,T], and let k e _1);
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-f sup V (yj(3)-z1 (U))+ V vs
0 a < t j cIro)

- sup v (Yj(s)--zj(8))+ v Gi
o < a < t jcfl(k)J

< sup Ix(s)-x'(s)u + 2 sup my(s) -y'(s)E

0< a< t 0o< a<t

<3 sup I(y(s),x(s)) -(y'(S),x'($))U

-31(y,z) -(y',z')i

Therefore,

(70) sup bi( )) - <,(tI. 33(y,z) -(y',x')U

It Is easily verifiled that (70) holds for ILk 1 (j). Therefore ve

obtain

(71) 1h (y'Z) - (y'

<31(y,z) -(y',z91l
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Line (71) implies that h(l) is continuous. In similar fashion it

can be shown that g(J) in continuous. Therefore G and H must be

continuous, and thus (G-H)n is a continuous map for any fixed n.

Moreover, the mapping x + (0,x) is a continuous mapping from CK

to C2K+I. Nov observe that (4(x),x) - (G.n)N(x)(O,x). Suppose that

N(x') > N(x), then the invariance of 4(x) implies the equation

(GoB (x') (Ox) - (GoH)N(x)-N(x)( x), x) - (x(x), x)

Therefore, it suffices to show that N(x) is a locally bounded

4q function of x. Define M(x) by

K
M(Z) 3 [I/A(X, A b /2)] + 1

q n--I n S

If x' e C[O,T] such that sup0<t<T nx(t)-x'(t)n < A b/4, then

N(x') < K(x). To see the last Inequality, note that

i2gap lx'( 1 ) - z(s 2 )I0 o < I < a 2 < <+ _T

< up [1x'(81 ) - x(ilIl
0 _ i . i2 < si+A < T

+ Wxe 1) - x(s 2 )1 + Ixli2 ) - x'(s 2 )]

K K
< A b(4-+-2+ Abn

n-l n-i
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KK
where A A(x, A U bn/2).

Therefore by definition of A we find that A(x', AK >nini n -

x, A 1 bn/
2). The definition of N and M together imply that

N(x') <.M(x). We now see that the mapping (,(x'), x') =

(G.H)N(x)(O,x') in locally a fixed power of G.Ho It is now clear

that (4,(x), x) and *(x) are continuous. Since O(x) - (4p(x), x).A,

where A is a 2K+1 by K matrix, it also follows that # is

continuous. Q.E.D.

4.3 Additional Properties

(72) Lama. Fix x e CS  and T > 0. Let y - 4(x) and z - #(x)

as before. Define x*(t) z(T) + x(T4t) - x(T), y*(t) - y(T+t)-y(T),

and z*(t) - z(T+t). Then y* - 4#(x*) and 9* - #(x*).

Proof. If y* satisfies (11)-(13) for x* then the equality y* -

4#(x*) will follow from Lema (63). We begin this task by showing

that y' satisfies (12) for x*. Let k e (1*1, ..., K) and t > 0

be given. Suppose that y*(t) > 0, then y,(T+t) > yk(T). From (12)

it follows that
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k k

- sup v (Yj(s)-Xj(s)-Yk (T)) +v (xk(s)+Yy(s)-yk (T) -bk)+

T<<(T+t j cfl(k)

- sup v [(y (s)-yj (T)-xj (s)+xj (T)+yj (T)-xj(T)-yk(T))+
T < s< Tt jefl(k)

V (x k ()-xk (T)+y a(s)-y 0(T)+lck(T)+yJT) -Yk(T)-bk).1

- sup v (y*(s-T)-x(s-T)) +v (x~k(s-T)+y aT-

The last equality is obtained from the previous expression by using

the definitions of y* and x*. If u - s-T is substituted for s

in the last line we deduce that

+ +
Yk (Tt)-yk (T) - sup v (y*r(u)-x*(u)) v xu)y( -bk0 < u < t JcI(k) i

The last line shows that Y~k satisfies (12) whenever I > 0. Let us

now suppose that yk*(t) - 0. Then yk(T~t) - Yk (T), and thus (12)

4 implies

Yk (T+t) > sup V (yj(s)-xj(s)) +v (xk(s)+Y, (s)-bk)+
T < a< T+t jeII(k)k

- sup V (y*(a-T)..x*(s-T)+yk(T))+
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The last equality follows again by simple substitution. Now

substitute u - s-T to obtain

(73) y(T+t) > sup v (y*(u)-x*(u)+y (T))+
0 < u < t J1(k)

v (x*(u)+Y*(u)+Yk(T)-bk)+

Since Yk(T+t) - yk(T), it follows from (73) that

(74 0 sup v (y*,(u)-x*(u)) + (xt(u)+y*(u)-b+

0 < u < t j CI(k)

Therefore, it now follows that y* satisfies (12) for x*. In

precisely the sane fashion it can be shown that y* satisfies (11)

and (13) for x*. Thus we have shown that y* - 4,(x*). It remains to

show that z* - *(x*). Let k c (1, 2, ... , K) be given,

4 k(X*)(t) - (t)-4%(x*)(t) + 4 1c(x*)(t) - X1(t)-y (t)+y*(t)

- zk (T)q-xk (T+t)-xk (T)-yk (T+t)+Tk (T)+y a(T t)-y a(T)

- xk(T+t)-yk(T+t)+y, (T+t)+zk(T)-zk(T)

=~~~~ Zk(T t)_=l(t •
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Therefore, it now follows that Z* - #(x*). Q.E.D.

In the preceding b was taken to be fixed; in this part b will

be allowed to vary. Let x e CS and b - (b1 , ..., bK) where

bk > 0. Define 4p(x,b) to be the function determined by

(11)-(13). Define *(x,b) in terms of x and 44x,b) according to

(68).

(75) Iea. The functions *(x,b) and *(x,b) satisfy

(76) 4- b)(.)- r 2  (, r 1 2 b)(r.)

(77) ,(x(re) b)(,) - r- 1/2  (x, r1/2 b)(ro) , where r > 0.

1/2 -1/2

Proof. Set w a #(x, r b)(r.). We will show that r v

satisfies (11-(13) for x(r-) r- 1 2  and then apply Lea 63 to

deduce (76). Let k e (*I, ... , K) and t > 0. The function w

satisfies by definition:

(78) vk(t) - sup v (w - () +

0 <s <rt jcfl(k) j ()

1/

v + k .s) + 1 r) r/ %1

Substitute u - s/r into (78) and simplify to obtain
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'. .-. ' " --' ' -' -- ..-. ... '- -' . -' ' '.. .. ., ' .- " " .' ' -. -.. ... " 2 - " /.. .

-Divide equation (79) by r1/2 to deduce

(80) r- 1/2 vk(t) sup v (wj(u) r- 1/2 x Ur) r-1/2)+
0 < u < t jen(k)

v (zk(ur) r-1/2 + v(u) r-1/2- b)+o

Equation (80) implies that r-1/ 2 v satisfies (12)-for x(r-) r- 1/2

and b. Similarly it can be shown that r-1/2 w satisfies (11) and

(13) for x(r.) r- 1/2 and b. It now follow that (76) is valid.

To prove (77), begin by observing that

b) xre) 1/2 1/2
x(r.) 4 (x(r.) r7 1/, b) + 4,(x(r.) r- b)

.$k(Xr-) I/2 ,  ) 1-=

Use (76) to deduce that

-1/2lk((r°) r-  , b)

-1/2) r/ r1/2,r b(r)+r 4,(xr/b(-

r r1/ [z(r- ) - 4(, r b b)(r.) + 4 r"z, 1/2  b)(r/) (

r-1/2 1/2

= r/ c(x, r b)(r.) .
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Therefore (77) holds as vell. Q.K.D.

(81) Proposition. Let x, z' e CS, and suppose x - x' on (0,t),

then *(x) - 4p(x') and #(x) - *(x') on [O,t].

The proof of Proposition 81 can be easily derived from equation

(51) and the definition of Gel. Therefore m omit the proof.

4.4 A Bound for the Boundary Process

Let w e CK+l, x e CK , and T > 0 be given.

1

(82) Proposition. The mapping G.B satisfies

(83) I(GOH)(w,x) I sup I(GoH)(w,x)(t) I < 21( Izl + lvI)
0< t <T

Proof. Observe that g(l) and h(-) satisfy

(84) Ih)(w,x)l < lvi + lxi , for 1 1, 2, *., 1-,

and

(85) Hg (w,x)l < Ilvi + lxi , for 1 - 1, 2, .. o, *-i

Since GoB-g(-l . o.o g(1 ) h(N-) • .h , line (83) now

follovs from (84) and (85) by recursion.
1I

(86) Corollary. The mapping x . (G.H)(O,x) satisfies
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(87) I(Go9)(O,) < 2M(nzu)

(88) laa. Let x c CK  be given. Then

K
(89) 1()(T), < N(x) 4 MN( v b),

nl

where N 5 M(W) is defined by (49).

Proof. The proof proceeds by induction on N. If N - 1 then (49)

Implies that

K
(90) sup Ix(O) - x(s)l < A b n

0< s< T n-I

Since x(O) e S, it follows from (90) that

K K
(91) x< x(0)N + A b< 2 v b6

n-i- n-i

Line (91) and Corollary 86 together Imply (89).

1

Now suppose by Induction that (89) holds for all z e CK such

that N(s.T) <a and all T > 0. Lot z CK  such that N(x,T)i-

Wle. Define Z* C1 as follows,
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(92) x*(t) 3 *(x)(A) + z(t,+A) - X(A)

wlure A a AN(, AK b ) Is defined by (48).

The definition of N implies that N(z*, T-A) < a. Therefore

K
(93) 34(x*)(T-A)I < (N(x)-i) 41( v b)

n-I

Lesm 72 Implies that

(94) 4,()(T) - 4,(x)(A) + 4,(x*)(T-A)

Lines (93) and (94) and the Induction hypothesis together Imply (89).

Q.E.D.

(95) Corollary. Let x c CK satisfy x(O)- 0. Then

K
(96) up ,,(zof4)(T), < N(z) 4M( Y b)

Proof. Observe that N(z) - N(x0+i) for any z0 c S. Line (96)r now follows from Loma 88. Q.E.D.

7
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This chapter is devoted to study of the I-dimensional stochastic

process Z # *(X), where I is the reflection mapping of Chapter 4

and X isa K-disensional Brownian Motion (with arbitrary drift and

covariance matrix). It will be shown that Z t a diffusion process,

and some of its properties will be explored. In particular, it will

be shown that Z has a unique stationary distribution, and an

analytical characterization of that distribution will be developed.

5.1 The Diffusion Property

This section begins with the Introduction of notation necessary

for defining a diffusion process on 1Ko

Let I be a rectangle on 1K and let CI  be the space of

continuous functions from [0,-) to I. Let (0,E) be a measurable

space and suppose Z: 0 * CI. Denote Z(w)(t) by Z(t). Let I

be a filtration of a-fields such that

(1) Z0. C , for t>O0

For each x c 1, let px be a probability measure on (0,_E). Let

1: 0 * [0,oi. Ve say that I is a Narkov time relative to

t > O) and {pxz 1 ) If

'i
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the3) Px(I < 1 for x I

Let be the pre- field, i.e.,

(4) F {A AcF: A n ( < t) c Ft for t >O)•

Ue will call {Z(t), t > 0 a diffusion on I if

(5) P Z(O) -z) -I forall x c I

and for all bounded, continuous functions on I and all Karkow time

!I

(6) eX[f(zlt+) r - EZlT)[f(z(t))] a X

For the remainder of this chapter let 0- C. Denote a

generic element of 0 by w ((Wl(t)..., w(t)); t 0). Let

X be the coordinate prucess on 0, i.e.,

(7) X(wt) -W(t) for t > 0 and w c Q

Denote (wt) by X(t).

Let F be the Sorel field on 0 generated by the topology of

uniform convergence on compact intervals. Let F. " A,>0 O(X(*):

74
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0o< s < t+e). For each x e RK , let Px be the probability

measure on (0,F) under which X is a Brownian motion with drift

vector p, positive definite covariance matrix A, and starting state

x. Define Z - 4(X) and Y - 4(X) with the reflection map (#,#)

given in Chapter 4.

Let c be a Markov time; define X* and Y* as follows:

(8) X*(t) =Z() + X(+t) - X(T) for t>0 , 

and

(9) Y*(t) - Y(T+t) - Y(T) for t > 0

We will now prove that {Z(t), t > 0) is a diffusion on S. But

first we need to prove several preliminary propositions.

(10) Proposition. For every t > 0, (Y(t), Z(t)) e Ft.

Proof. This measurability property follows easily frou the measur-

ability preserving property of G.H (see Leam 4.50). The masur-

ability of G.1 in turn follows from Proposition 2.16.

(11) Proposition. Every Narkov time v and every bounded random

variable W e *{Z(), X( +t) - X(T), t > 0) together satisfy

(12) e,..~j - e[Wjz(T)I a. P1 for x c S

Proof. By the usual monotone class argument it suffices to show that

W- f 0 (Z()) • f 1 (X(r-tI)-X(T)) ... f,, x(,t n  - 0
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satisfies (12), where fj, J = I, ... , n, is a bounded Borel

function and 0 < t I < t 2 < <.. t. Observe that if Z() c F, it

follows that

(13) X[%.] - f0(z(r)) iz[fl(X(v+tl)-X(T))

f .. f eux=t)-x(,))% ]

By the strong Narkov property of Brownian motion it follows from (13)

that

(14) Kz[VI - fo(Z(r)) E[f 1 (X(r+tl)-X(r))

•0 fn f( U(4 n)-X(T))]

Notice that the last expresLon is a function that belongs to a(Z(v))

and therefore (12) must hold. It now suffices to show that Z( r)

e _i. To show this, begin by observing that if v is countable the

result is easy to prove. Notice that in - [un lJ/n is a Markov

tLm. Therefore Z(in) . But - V2.- A. 1  n Since Z

is continuous we have

(v) mha Z(n) 9 A . - F . Q..D.
n m n-I n

7
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(15) Lemima.

Ex[f(Z(r+t))I._J - EZ( 'r)[f(Z(t))] a.s. eZ

and

Exig(Y(vr't) - Y( )) . - EZ('T)lg(Y(v.t) - Y(-c))I a.s. pX

where f and g are bounded, continuous functions.

Proof. Line (4.9) and Proposition 10 together imply that

(16) f(z(r+t)), g(Y(+t) - Y(T)) e *(X*(t), t > 0)

Line 16 and Proposition 11 together imply (15).

(17) Theorem. The process {Z(t), t >0) is a diffusion on S.

Proof. Observe that (5) follows from the Identity Z(0) - X(0).

Condition (6) was verified in Lmna 15.

5.2 Ergodicity

In this section we will prove that Z satisfies the conditions

of Theorem 2.59.

(18) Proposition. Let U be the standard K-imsnusional Brownian

notion on 10,T) with W(O) - 0. Suppose 3 is an open set of the

form:
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(19) B (y: ly-xl < e} , where x satisfies

(20) x(t) ct t [0,T] and c c K

Then P(W B) > 0.

Proof.

P(W c B) - P( sup *W(t) - ctU < e}
0<t<T

K

- < t T< T - CktI < C)

Observe that if c - 0 then the result follows from elementary

properties of 1-dimensional Brownian notion. For ck * 0, the usual

likelihood ratio argument (for example, see (2.53) above) will show

that

(21) P sup Ilk(t) - ckt j < C) > 0 • Q.E.D.

(22) Corollary. If X In any fully K-dimensional, Brownian motion

with (O) - 0 then P(X c B) > O.

Proof. We can represent X as
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(23) X mAW + Pt

where A is a K x K non-singular matrix and pI is a K-dimensional

vector. Cbserve that there exists 6 > 0 such that

-1
{w: sup I(t) - A-(c-I)t < 8) c (X B)

0 < t < T

Therefore P(X c B) > 0 follows from Proposition 18.

(24) Proposition. The process Z satisfies property (2.60).

Proof. Let z,y e S, and T,c > 0 be given. Define Q a subset of

CK as follows:

K
Q (x e C: Ix(T) - yl < e}

Define

B 5 {:IZ(T)-yI < e) - { : *-(Q))

Since * is continuous and Q is open, it follows that 471(Q) is

open. Define

-I (Q)- _ (x(t)-z: x(t) - (Q) •

-1
Clearly # (Q)-z is open. Furthermore, the function (1 - t/T)z +

(t/T)y belongs to -I (Q). Therefore x(t) 3 (t/T)(y-z) belongs to

#- (Q)-z. Corollary 22 now implies
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(25) PZ(Z(T) c (y-c, y+E)) P 0(X c (Q)-z) > 0

The general result follows easily from (25). Q.E.D.

(26) Proposition. The process Z satisfies property (2.61).

Proof. Let f c C(S) and x e S be given. Observe that

(27) EY(f(Z(s)) - E 0[f(4(y+X)(s))]

Since is continuous it follows that

(28) f(f(y+X)(s)) + f(*(X+X)(t)) as s * t and y x

Since f is continuous and S compact we have

(29) jf(t(y+X)(s))j < If'

Lines (27), (28), (29) and the Dominated Convergence Theorem together

imply that

(30) lis EY(f(Z(s)) - Ex(f(Z(t)) . Q.E.D.

SBt,y~x

(31) Proposition. Every state of the Brownian motion X is

diffusion-like.

8
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Proof. We begin by observing that the spatial homogeneity of the X

process allows us to consider only the 0 state. There exist a

nonsingular K x K matrix D and K-dimensional vector c such that

W(t) - DX(t), where W is standard Brownian motion with drift c.

Define Br (D7x: lxi < r) and T by

(32) -inf (s; X(s) c 8B r ) .

Let Q be a measurable subset of R+ x B r, and define Q* B {(s,Dz)

where (s,z) e Q}. Thus it follows that

(33) px(( , X()) e Q) - px((-, W(-)) C Q*)

Line (33) and Proposition 2.50 together imply that

(34) lim sup P x((T, X(T)) C Q)) - p0 ((, X(-)) C Q) 0

where Q is the class of Bore, measurable subsets of R+ x bBr .

Finally, Px(% < I) 1 because Brownian motion always escapes

bounded neighborhoods.

(35) Propositi^. The diffusion-like states of Z are dense in S.

Proof. Since Z behaves like X in the interior of S, the

proposition is implied by Proposition 31. Q.E.D.

Proposition 2.59 now implies that Z is an ergodic process.
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5.3 A Change of Variable Formula

It will be convenient to represent X in the form X(t) -

W(t)+$jt where V B (W(t), t > 0) is a Brownian motion with

covariance A, zero drift and W(0) - X(O) - Z(O). Then we have

(36) Zk(t) Wk(t) + Hk(t)

where

!l (37) Hk~t) -= kt -Yk~t) + Ya t),t>0,

for k - 1, ..., K. Observe that Wk  is a martingale over (Ft}

and that Mk is a continuous adapted process of bounded variation.

Thus each Zk is a continuous semimartingale, and one can develop

the analytical theory of vector process Z from the following version

of Ito's formula: For twice differentiable functions on Rk define

the (constant coefficient) differential operators

K K a2 K b
(38) L - a1i ax ax j i -8x1

and

(39) D ) a for k- 1, K..,Kkax aJ cfl(k) j ~

and

(40) D ~ j~

Observe that Dk is the directional derivative in the direction of

reflection at the boundary {Zk - u} U {Ajn(k) Zi - 0). For
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k - K+1, DK+j is the directional derivative in the direction of

reflection at the boundary (AJr(K+I) ZJ - 0). Let S (for smooth)

be the class of functions f(t,x) that are continuously

differentiable in t > 0 and twice continuously differentiable in

x e RK.

(41) Theorem. If f e S then

, t
(42) f(t,Z(t)) - f(OZ(O)) - [ (s,Z(s)) + Lf(s,Z(s))]ds

0

K t
+ f o (s,Z(s)) dWk(S)

k-i 0 -xk

+ I f Dkf(s,Z(s)) dYk(s)

for all t > 0. Here the integrals involving dWk(s) are of the

Ito type, and those involving dYk(s) are defined path by path as

ordinary Riemann-Stieltjes integrals.

Proof. By making minor changes in the proof of the Kunita-Watanabe

[91 change of variable formula it can be shown that the following

equations are valid.

8
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t
(43) f(t,Z(t)) - f(O,Z(O)) + f - f(s, Z(s)) da

o 8

K tK t

k-+ 0 f (K- t k"-f(sZ(s)) d

K K t 2+ ! !I f f(.,z¢,)) dZ (,) d=j¢.),
±I J-1 0 a laj

where the differentials are computed from (36) and (37) in the obvious

way and

(44) dz(t) dZ (t) = j dt

by convention.

Equation (42) is now obtained from (43) and (44) by simply

collecting terms.

(45) Definition. Define Sk as follows:

(46) Sk = {x eB: xk - bk} for k - 1, ... , L

(47) sk --- (x C S: (A xj) (xk-bk) =0) for k - L+1, ...-j Jell (k)

(48) SK+1 - Cz s: A - 0)jen(K+1) J

84
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(49) Corollary. Let f e S and suppose in addition that

(50) Dkf(t,x) -0 for x e Sk and k = 1, K.., [+1

over the interval 0 < t < T. Define

t
(51) M(t) = f(t,Z(t)) - f [-A f(s,Z(s)) + Lf(s,Z(s))] do

0

Then ((M(t), Ft); 0 < t < T) is a martingale.

Proof. If (50) holds, then each term in the final sumation on the

right hand side of (42) vanishes, because Yk(*) increases only at

those times where Z(t) e Sk. Thus Theorem 41 implies that

(52) 2-(t) - M(O) = -t - f(s,Z(s)) dWk(s) , 0 < t < T.
k-I O xk

Observe that the continuous functions 8/bx I f, ... , 8/8xk f are

bounded on the compactum [0,T] x S. Consequently the integrands of

the Ito integrals of (52) are bounded, so the right hand side of (51)

must be a martingale.

(53) Corollary. Let h: S * R be continuous. Suppose that f c S

and that f satisfies condition (50). If

(54) - f(t,x) + Lf(t,x) = 0 for x e S and t £ [0,T]
at
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and if

(55) f(T,x) h(x) for x e S

then

(56) E(h(Z(T))] - E[f(O, z(O)j

The proof follows immediately from Corollary 49.

5.4 The Stationary Equation

Let 11 be the stationary distribution for Z, meaning that

(57) 1(A) - f ll(dx) Pt (z A) for all t > 0
A

and A a Borel measurable subset of S, and where Pt(*,*) is the

transition distribution for Z.

let V* be the expectation operator associated with n. For

k - 1, 2, ... , K+I define vk  a finite measure on S as

1
(58) vk (A) -* f IA(Z(t)) dYk(t)

0

Later in this section we will prove that Vk is indeed a finite

measure on S.

(59) Theorem. The measures vk, k 1 1, 2, ... , K+I, and II satisfy

the following equation

K+I
(60) 0nf Lf(x) n(dx) + I f D.kf(z) vk(dx) for f eS

S k-ISk

86



The remainder of this section is devoted to proving Theorem 59.

(61) Proposition. Let t > 0 be given. Then there exists at < "

such that

(62) EX(nY(t)n) < at for x e S

Proof. Define C(s) -X(s)-X(O). Observe that C(t) is independent

of l(0) and that is a Brownian notion with drift p, covariance

matrix A and C(O) 0 0. Observe that N(Xt) N(,t).

Corollary 4.95 Implies that

K(63) _(Yt))< •((~) M b>
n

where N(,t) is defined by (4.49), and M is the number of stages.

Elementary properties of Brownian motion imply that 0(N(Q,t)) < .

Since is independent of X(O) it follows that

(64) EX(N(C,t)) - E0(N(C,t)) < •

Lines (63) and (64) together imply (62).

(65) Corollary. Every k e {1, 2, ..., K+I} satisfies

(66) E*(Yk(t)) < - for t > 0
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The proof of (66) is a direct consequence of (62).

Let k e (1, 2, ... , K+1) and t > 0 be given. For f c C(S)

define Xt(f) as follows:

t
(67) x t(f) a E*[ t f(Z(s)) dk(s)]

0

(68) Proposition. The operator Xt  is bounded, linear and

positive.

Proof. The linearity and positivity of Xt follows easily from the

linearity and positivity of E*. If IfI < I then

t
(69) 1xt(f'f) R[f 10 I dyk(s)] (* Yk(t) < at Q.E.D.

0

(70) Corollary. The operator Xt has the following representa-

tion:

(71) Xt(f) ff(x) Xt(dx)
S

where is a finite measure on the Borel sets of S.

Proof. Observe that S is a compact Hausdorff space, and that Xt

Is a bounded linear functional on C(S). Therefore the Rie:s

Representation Theorem (see Royden [12]) implies that there exists a
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post-t field. The penultimate equality follows from the stationarity

of the Z process and (4.9). Q.E.D.

(74) Proposition. Every t > 0 and f e C(S) together satisfy

t
(75) Xt(f) *[f f(Z(s)) d- () ]  t f f(x) vk(dx)

0 S

Proof. Let f c C(S) be given. The function g(t) - X(f) is

linear and continuous, therefore elementary function theory implies

that

(76) Xt(f) - g(t) - tg(1) - tX (f) - t f f(x) XI(dx)
S

Finally, Vk equals XI by definition. Consequently (75) must

hold.

(77) Proposition. The measure vk is supported by Sk .

Proof. Observe that lines (4.5)-(4.7) imply that

4
(78) IS " I a.s. Yk() for every a c •

SSk

Therefore,

I II"If I IZi. l (79) E* f Isk(Mt)) dY (t) = E* f Is(Z(t)) dYk(t)'
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finite signed measure Xt which satisfies (71). Since Xt  is a

positive operator, it follows that Xt ust be a positive measure.

Q.E.D.

In the following we will let the symbol Xt represent both the

operator Xt and the measure Xt.

(72) Proposition. Every t,s > 0 and f e C(S) satisfy

(73) x t+sf) - xt(f) + x 8f)

Proof.

t+sx t.C f) - *[f f(Z~u)) dY k~u)]
0

t t+s
- E*[f f(Z(u)) dYk(u)] + E*[f f(Z(u)) dYk(u)]

0 t

t+s
X (f) + E*(EZ(t)[f f(Z(u)) dYk(u)])

t

X (f) + E*[f f(Z(u)) dk(u)]
t 0

X M + X (f) •

The antepenultimate equality follows from the Markov property of tK'

(ZY) process and the fact that ft+s f(Z(u)) dYk,(u) belongs to the
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wbere each integral is defined pathnise as a Lebesue-Stiettjes

integral. Line (79) now implies that vk(Sk) - vk(Sk) -E*(Yk(i)).

Q.E.D.

We vill now prove Theorem 59. Take f c S then Theorem 41

implies that

t K t b
(80) f(Z(t))-f(Z(0)) - f Lf(Z(s))ds + I f (

0 k-I 0 (z¢a))

K+I t
+ Df(Z()) dYk(s)

k-I 0

Apply E* to (80), and use the stationarity of Z and Fubini's

Theorem to obtain

[+1 t
(81) 0 - t f Lf(x) II(dx) + I E*[f Dkf(Z(s)) dYk(S)]

S k-i 0

Apply Propositions 74 and 77 to (81) to obtain

K+I
(82) 0 - t f L(x) fl(dx) + I t f Dkf(x) vk(dx)

S k-i Sk

Dividing through by t we now obtain (60).
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CUMMT 6

A LIMT TEKORU

In this chapter we consider a sequence of production networks

indexed by n - 1, 2, .... (Processes and quantities associated with

the nth system will be indicated by a superscript n.) Each system in

the sequence has the same number of work stations, denoted by K+1 as

in Chapters 3 and 4, and has the same network structure, embodied in a

fixed successor mapping a as in Chapters 3 and 4. The sizes of the

storage buffers and the stochastic character of the various potential

output processes will be allowed to depend on n. Specifically, it

will be assumed that storage buffer k is of size bk nl/2 in

the nth system, where b - (bI, ..., bK) is a fixed vector with

strictly positive components.

6.1 The Main Result

Let (4,,) be the reflection mapping on CK defined in terms

of a as in Chapter 4. Recall that we write 4(x,b) and Ox,b)

when it is desirable to indicate explicitly the dependence of these

maps on the capacity levels b - (b, .. , bK).

Let (0,B,P) be a probability space upon which there are defined

a sequence of potential output processes { (n), n > 1}. Define

{X ( n ) n > 1} by

(1) n) (n) - (n for k- 1, ... , K
Ck ,(k)

Alternately, we can represent X(n) by
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(2) x(n) _ (n),
(2) X F

where F is a K x K+l matrix defined by

I 1 for j - i

(3) f - - for j - o(i)

(0 otherwise

(nl) (n)Define (Z yn) for n > I as follows:

(4 (n) -1/~n 2  (n) 1/2

(4) z M n -  (X n h) (nt)

and

(5) Y(n)(t) n- 1/2 4(X(n) n1/2 b) (nt)

Referring to Chapters 3 and 4, we see that *(X(n ) , n1/2 b) is the

K-dimensional buffer contents process for a production network with

potential output process C(n) and capacity n1/2b. That is,

#(X (n ) , n1/2b) is the contents process for our nth system, and

(n) 1/2*l(X , n b) is the associated loot potential output process.

Then Z (n) and Y(n) are obtained from these, the processes of

fundamental interest, by a rescaling of time and space.

(6) Theozem. Let X(n) z(n) Y(n) be defined by (1), (4), (5)

respectively. Suppose that
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+7

(7) n1/2 xin)(nt) -> x as n -

where X is a Brownian motion with drift vector ji and covariance

matrix A as in Chapter 5. Then

(8) (Z(n) y(U)) -> (#(lb), +(Xb)) as n .-

Proof. Lemma 4.75 Implies that

(9) z ) (t) -1/2 (nt), b) ,

and
(10) yln)(t) - 1/2 X(n)(nt),

" Theorem 4.69 Implies that the mapping x (4(z), 44z)) Is continuous

from CK to C2K+1. Since n- 1/2 ((n)(no) converges weakly to X,

the continuous mapping theorem Implies that

(11) (#(n- 1/2 X(n(nt), b), +(n"1/2  (n) (at), b)

-> ((X,b), 4o(Xb)) as n *.

Lines (9), (10) and (11) jointly Imply (8). Q.E.D.

6.2 Two Applications

As specific examples of our general production network, we

discussed in Chapter 3 a random walk model and a random euvironment

. 9
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model. Theorem 12 below shows how the hypothesis of our main result

(6) can be satisfied by a sequence of random walk models. The

Interpretation of this result in term of random walk models will be

clear from the notational parallels with Section 3.2.

(12) Theorem. Let (Q,,P) be a probability space and suppose that

for each n > 1 there exists C(n) (a); a > 1} a sequence of lID

random K+1 vectors such that

(13) Ia n 1/ 3(C(n(1)) p &, where p c ,

(14) JIm COV(C(n)()) -D where D Is a K+1 x K+1
n - positive definite matriz,

* and

1i(15) lan 1C IC~)  dP? 0 for all e > 0.

=;n (I ..{ (n)( MOCK 1/2

Define C(n)(t) as follows

[ 1(n €(n)(- (n)([:I
(16) C t) a C () + (t-[t) C•+1)

U-1

Define X(n) by

(17) X(U)  (a) .

Let X be a K-dimensional Brownian motion starting at 0 with drift

P; and covariance mtriz A - FD'. Finally deflue (Z~a), Y(U)) by

equations (4) and (5). Then
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() 18) y)) (Z> (l(X,b), $(Xb)) as n

Proof. L..._n 20 (proved below) implies that

(19) ;/m n Xn) (n.)-> X.

Line (19) and Theorem 6 jointly imply (18).

(20) lamma. Let (0._,P) be a probability space and suppose that for

each n > I there exist@ (,,(n)(m); a 1) a sequence of M

random K-vectors such that

(21) laz f , (n)(1) 2 dF - 0 , for all e > 0,•~~~ j , lr(n) 1lpn/2}

(22) IUs Cov(n)(1)-A ,

ad

(23) ]LUs a 12  n ) (1) -P

Define x(n) for a> I by

(24) (a)) W

2) )) + (t - In 1 1t+1) .
a-1

miJul

The n 1 2 z(ann.) converge weakly to X as an. where Is

a lD min motion with drift vector i aind covariance uatrix k.
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Proof L 1a 2.104 Imlies that It is. sufficient to prove that

lrTXW), a > 1) converges weakly to rT(X) for every T > 0 (see

(2.103) for the definition of rT). The weak convergence of

(r T(X n), n'> 1) to r T () can be proved by imitating the proof of

Theorem 4.1 of Parthasarathy [11). Q.E.D.

Finally, we consider a sequence of random environment models

which satisfy the hypothesis of our limit theorm (6). T or

simplicity, we suppose that the various systems in this sequence share

4 a comsn environtment process 0, but the work rates rk(m) for

various states of the euiroamut a change with sequence index n.

The Interpretation of the following In tetwo of random euvio t

moe will be clear from the notational parallels with Section 3.3.

(25) Theorem. Let (G,,) be a probability space and suppose that

there Is defined on (0,P) an ergodic Narkov chain 0!a (0(t),

t > 0) with state space (1, 2. ... 9 ) and stationary distribution

11. Por n > 1, let r(n) be a mapping from (1, 2, .. , ) to

R".Suppose that 0 and r~n jointly satisfy

(26) G(0) a

(27) 311r(n)(0MOM)a n1 2  SO a ~ where P 6 £

and

(26) "am Fr (n) -g where IgI<.
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Define w(n) and I(n )  respectively by

:0:" (n)( (n)( (n)( )

and.. (29) w (,-Fr•)

(30) lU l(t) ( w i)Is)ds , for t > 0 and n > I
0

As before deflne (Z(U), ()) by equations (4) and (5). Then

(Z(n) y n)) converges weakly to (#(X,b), +(X,b)), where X is a

Brownian notion starting at 0 with drift g and covariance mtriz

A defined by

(31) A a 2 f Cov(So(o)), g(ols))) do
0

Before we can begin the proof of Teorm 25, w need to consider

som p'eliinary concepts.

Let v -MvO t > )O be a stochastic process from 0 to

1#. We define v to be b if

(32o) Ims n 22) - KX ).z,(X2)1 < ('I) h t),

holds ubenever Ii les In the a-field garated by (ve);

0 1u 18) and 92 U"Ies ithe O-f IOUgm~ted bY ON~);

(33) 1m . Sppose (v(), a > 1) is a sequence of strictly

stationary stoehastic processes on (G.1,?) wbch Jointly satisfy
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. {(n)
(34) v Is a aemurable function a.s. P,

(35) c Process v(n ) is h-mizins,

(36) f1 h 1/2(t) dt <.
0S(37) u l v(n)l d]? 0 for ant C > 0

,n (a) 1/2 0

(38) lft Cov(vo9 v - p(s).
nm

4er. p is a real valued watrx functiom, and

S(39) . i1/2 (a) "

(39) 11 a zj

Def lam I" a rando= elemen of C1 by

(40) X(n)(t) a (a) do
0

-1/2
hea a 1n(n.) converges meakly to I, where X Is a Brownian

motion wlth drift p and covarlance mtrx A - (ajj) djj b

I!



(41) aij 2 f Puj(a) do

The proof of Lemna 33 is almost Identical to that of Theorm 20.1

of Billingsley [I], and therefore ue omit it. Q.E.D.

We will mn prove Theorm 23. Since 0 is an ergodic Markov

chain, It is possible to show that there exists h(t) a art (where

a > 0 and r < 1) such that a In h-mizing. Consequently w(n )

must siso be h-lmixng. Clearly h satisfies condition (36) of
lhln~l * an the~refore v~h

Urn.. 33. Observe that a up,>,

satisfies (27). Lim (28) guarantees that

(42) lL. Covw(n)(0), Wln).)) - Cov(g((o)), gS(01)))
n@e

Finally observe that w(n) I measurable almost surely (T) because

* Is measurable elast surely (P). Therefore (w(aI , a > 1) satis-

fies the hypotheses of Lea1 33 snd thus

(43) Ma n-1/2 (l)

where I Is a Brownian motion starting at 0 with drift pand

covarancs A. Theorm 6 am Implies the desired result.

(44) Imsrk. Condition 26 my be amtted fra Theorm 25 without

chegl Its conclusions.
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